
A polynomial-time probabilistic algorithm for
the minimum distance of an arbitrary linear

error-correcting code1

Aron Foster
April 30, 2004

Contents

1 Introduction 1

2 Algorithms 4

3 Examples 6

4 Application to McEliece Public Key Cryptosystem 7

5 Appendix: GAP Code 8

The goal of the project is to examine a polynomial-time probabilistic
algorithm to compute the minimum distance of an arbitrary linear error-
correcting code. The work shall be done in the GAP coding-theory package
GUAVA. GAP is a computer algebra package whose open source kernel is
written in the C programming language. However, most packages (such
as GUAVA) and the algorithms described here are written in GAP’s own
interpreted language. The pseudo-code in the literature for this polynomial-
time algorithm is flawed, as will be explained below. Jointly, with my advisor,
I corrected and improved this algorithm.

1 Introduction

Error-correcting codes are used primarily to transmit data across a noisy
channel. They do this by encoding the data (adding some redundancy) to
the transmission so that the original message can be recovered even if a few
errors have occurred. Codewords are the encoded data; they are what is
transmitted. A code is a set of codewords, and a linear code is a subspace

1Mathematics Honors Report, Spring 2003-2004, Advisor: Prof W. D. Joyner

1

of the vector space (Fq)
n, where F = GF (q) is the finite field with q elements.

The length of the code is the integer n. A generator matrix of a linear
code can be any matrix whose rows form a basis for the subspace. Let C be a
linear code of length n over F with generator matrix G, where q is a power of
a prime p. If p = 2, then the code is called binary. We assume that F

n has
been given the standard basis e1 = (1, 0, ..., 0) ∈ F

n, e2 = (0, 1, 0, ..., 0) ∈ F
n,

..., en = (0, 0, ..., 0, 1) ∈ F
n. The dimension of C is denoted k, so the

number of elements of C is equal to qk. The quantity R = k/n is called the
rate of the code and measures the amount of information that the code can
transmit.

Example 1 Consider the code C1 over GF (2) with generator matrix G1

given by

1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

and consider the code C2 over GF (2) with generator matrix G2 given by

1 0 0 1 0 1 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0

.

Notice that these two codes are identical except that the 4th and 5th columns
have been swapped. Therefore they are equivalent to each other in the sense
defined below.

Two codes are equivalent to each other if one can be obtained from the
other by a combination of permutations of coordinate positions of the code
and multiplication of the symbols appearing in a fixed position by a non-zero
scalar. More precisely, two codes are equivalent if the generator matrix of
one can be derived from the other using operations of the following types:

1. Permutation of the rows.

2. Multiplication of a row by a non-zero scalar.

3. Addition of a scalar multiple of one row to another.

2

4. Permutation of the columns.

5. Multiplication of any column by a non-zero scalar.

Two codes are permutation equivalent if one generator matrix can be
obtained from the other by using operations of only type 4.

Lemma 1 2 Every linear code C of length n and dimension k is permutation
equivalent to a code C ′ with a generator matrix of the form (Ik |A), where A
is a k × (n − k) matrix.

A code with generator matrix in the form above is said to be in standard

form.
Another important parameter associated to the code is the number of

errors which it can, in principle, correct. For this notion, let us introduce the
concept of distance between codewords. For any two x,y ∈ F

n, let d(x,y)
denote the number of coordinates where these two vectors differ:

d(x,y) = |{0 ≤ i ≤ n | xi 6= yi}|. (1)

This defines the Hamming metric on the space F
n. Define the weight w

of x to be the number of non-zero entries of x. Note, d(x,y) = w(x − y)
because the vector x− y has non-zero entries only at locations where x and
y differ.

If d(C) denotes the smallest distance between distinct codewords in a
linear code C, then there exist x and y such that d(C) = d(x,y). Then
d(C) = w(x−y) ≥ w(C), where w(C) is the minimum weight of a codeword
in C. Also, for some codeword z, w(C) = w(z) = d(0, z) ≥ d(C). Therefore,
w(C) = d(C).

If M is any matrix with coefficents in F, then let d(M) denote the mini-
mum distance of the linear code spanned by the rows of M .

Now, define the minimum distance d of C to be

d = min
c∈C, c6=0

d(0, c) = d(C). (2)

Note, if C is equivalent to C ′, then d(C) = d(C ′). In general, this parameter is
known to be very difficult to efficiently determine [CHA]. In fact, computing
it in general is known to be NP-complete [BMT], [VAR].

2See, for example, [HILL] or MacWilliams and Sloane [MS] for a proof of this fact.

3

2 Algorithms

Currently, when GAP is calculating the minimum distance, it examines the
weight of every possible linear combination of rows in G. The following
algorithm is much faster.

Algorithm 1 1. After replacing C by a permutation equivalent C ′, one
may assume the generator matrix has the following form G = (Ik |A),
for some k × (n − k) matrix A.

2. Find the minimum distance of the code spanned by the rows of A. Call
this distance d(A). Note that d(A) is equal to the Hamming distance
d(v, 0) where v is some proper3 linear combination of i distinct rows
of A.

3. d(C) = d(A) + i, where i is as in step (2).

Though this is still an exponential time algorithm problem, the vectors
being compared are of length n − k rather than length n. There was an
increase in speed by a factor over 1000 in some examples4. Additionally, this
algorithm works for all Galois fields of order q ≥ 2.

The probabilistic algorithm used to reduce this to polynomial time was
initially proposed by J. S. Leon [LEO] and later modified by F. Chabaud
[CHA]. One iteration of the algorithm given in Chabaud’s paper is as follows:

Algorithm 2 Let q be a power of a prime p and let C be a linear code of
dimension k over GF (q) as above. This algorithm has input parameters s
and ρ, where s is an integer between 2 and n−k, and ρ is an integer between
2 and k.

(1) Find a generator matrix G of C.

(2) Randomly permute the columns of G.

(3) Perform Gaussian elimination on the permuted matrix to obtain a new
matrix of the following form:

G = (Ik |Z |B) (3)

with Z a k × s matrix.

3In other words, exclude the case where all coefficients are equal to 0.
4n = 55, k = 25, d = 6 in GF (2), but see also section 3 below.

4

(4) Search (I |Z) for at most ρ rows that lead to codewords of weight less
than ρ.

(5) For these codewords, compute the weight of the whole word.

However, sometimes step (3) is impossible because gaussian elimination
does not always produce a matrix in standard form. For example, take any
code with generator matrix in row reduced echelon form which is not of the
form (I |A).

Here is a faster version of Leon’s algorithm that was discovered jointly
with my advisor in the process of working on this project.

Algorithm 3 Notation as in Algorithm 2.

(1) Replace, if necessary, C by a permutation equivalent code C ′ with a
generator matrix in standard form, G = (Ik |A).

(2) Select s columns at random from the matrix A and call the resulting
k × s matrix Z.

(3) For each i ≤ ρ, find the linear combination of exactly i rows of (I |Z)
for vectors of smallest weight.

(4) For these vectors, compute the weight of the associated codeword.

(5) Find the minimum weight of the codewords from (4). Call this dZ .

(6) Repeat this algorithm some multiple m times and return the most com-
monly occurring value of dZ.

Chabaud [CHA] and Barg [BARG] have discussed finding optimal values
for ρ, s, and m. We have selected m to be 7, ρ to be 3, and s to be n − k
since those values seem optimal for codes of length less that 100.

To perform step (4), the row numbers and coefficients must be saved
from step (3). However, the standard command in GAP (written in the C
programming language and part of the GAP kernel) for searching through
row combinations for a weight does not return this data. In the binary case,
an algorithm for finding minimum weight is simply a matter of examining the
sum of up to ρ row combinations. A relatively fast implementation (in GAP)
of this algorithm has been written in the binary case. However, for codes

5

over GF (q), especially if q > 2 is moderately large, a fast implementation
of this algorithm requires modifying the standard GAP command. Since
this command is part of the kernel, it will also be necessary to recompile
GAP before it can be used in any implementation. This coding in the C
programming language has not yet been implemented.

3 Examples

First, let us compare GUAVA’s minimum distance command MinimumDistance

with an implementation of Algorithm 1, called MinDist. The first output is
the minimum distance, the second is the internal GAP time it takes for the
computation.

gap> Read("/home/wdj/gapfiles/codes/foster_mindist8.gap");

#I Package ‘‘GUAVA’’: the C code programs are not compiled.

#I Some GUAVA functions, e.g. ‘ConstantWeightSubcode’, will be unavailable.

#I See ?Installing GUAVA

--

Loading GUAVA 1.82 (GUAVA Coding Theory Package)

by Jasper Cramwinckel,

Erik Roijackers,

Reinald Baart,

Eric Minkes,

Lea Ruscio, and

David Joyner (http://web.usna.navy.mil/~wdj/homepage.html).

--

gap> C:=RandomLinearCode(20,15,GF(3));

a linear [20,15,1..3]2..5 random linear code over GF(3)

gap> MinimumDistance(C);time;

3

9350

gap> MinDist(C);time;

3

10

Next, let us compare an implementation of Algorithm 3, called MinDistLeon,
to GUAVA’s minimum distance function. The 0 indicates that it finished al-
most instantly. The 5 elements of the array are the minimum distances found
in each of 5 trials. The second and third arguments are ρ and s, respectively.

gap> Read("/home/wdj/gapfiles/codes/foster_mindist6.gap");

gap> C:=RandomLinearCode(40,20,GF(2));

6

a linear [40,20,1..7]6..20 random linear code over GF(2)

gap> MinimumDistance(C);time;

5

260

gap> MinDistLeon(C,3,3,5);time;

[5, 5, 5, 5, 6]

5

0

Concluding Remarks In the process of writing this code, my advisor
and I discovered that GAP had an error in one of it’s kernel functions. In
fact, this was a known error that the developers were not able to track down
until we provided them with code that caused GAP to crash. This enabled
the developers to patch the kernel. This was not essential to this project,
but a nice benefit.

The essential parts of the project were writing MinimumDistance and
MinimumDistanceLeon. The GAP code for these programs are attached as
Appendices.

The improved algorithm presented here is included in version 1.9 of
GUAVA (released 4-2004).

4 Application to McEliece Public Key Cryp-

tosystem

We follow section 1.2 of [CHA].
Here is a brief description of this cryptosystem. Alice is sending a message

to Bob. Eve is trying to read Alice’s message. Given is a [n, k, d] binary code
with generator matrix G and also given is a decoding algorithm that corrects
up to t errors. Input parameters are an invertible k × k matrix S and an
n×n permutation matrix P . The triplet (S, G, P) will be the secret key and
the pair (t, Ĝ = SGP) will be the public key. Everyone knows the public
key, but Alice and Bob are the only two who know the secret key. For Alice
to transmit a k bit message m, she sends the cipher text c = mĜ + e, where
e is a random vector of weight at most t. To decipher the cipher text Bob
decodes cP−1 = mSG + eP−1 using the given algorithm.

To decrypt an encoded message, consider the matrix

G′ =

(

Ĝ

mĜ + e

)

.

7

This is the generator matrix of a linear code C ′ with minimum weight code-
word e. Note that e is the only vector in C ′ of minimum weight, by construc-
tion. Algorithm 3 can be modified to yield not only the minimum distance,
but also a vector of minimum weight. Using this fact Eve can solve for e,
and therefore she can solve for the message m sent by Alice. This example
illustrates the usefulness of fast minimum distance algorithms for cracking
certain types of McEliece cryptosystems.

5 Appendix: GAP Code

Default Minimum Distance Algorithm, Algorithm 1

InstallMethod(MinimumDistance, "attribute method for linear codes", true,

[IsLinearCode], 0,

function(C)

local Gp, Gpt, Gt, L, k, i, j, dimMat, Grstr, J, d1, arrayd1, Combo, rows, row, rowSum, G, F, zero, AClosestVec, s, p, num;

G := GeneratorMat(C);

if (IsInStandardForm(G)=false) then

G := ShallowCopy(G);

PutStandardForm(G);

fi;

F:=LeftActingDomain(C);

num:=5; #these seem to be optimal values

dimMat := DimensionsMat(G);

p:=dimMat[1]; #this equals k

s := dimMat[2]-dimMat[1];

Gp := ShallowCopy(G);

##Use gaussian elimination on the new matrix

TriangulizeMat(Gp);

##generate the restricted code (I|Z) from Gp=(I|Z|B)

Gpt := TransposedMat(Gp);

Grstr := NullMat(s,dimMat[1]);

for i in [dimMat[1]+1..dimMat[1]+s] do

Grstr[i-dimMat[1]] := Gpt[i];

od;

Grstr := TransposedMat(Grstr);

zero := Zero(F)*Grstr[1];

##search for all rows of weight p

J := []; #col number of codewords to compute the length of

for i in [1..p] do

AClosestVec:=AClosestVectorCombinationsMatFFEVecFFE(Grstr, F, zero, i, 1);

if WeightVecFFE(AClosestVec) > 0 then

Add(J, [AClosestVec,i]);

fi;

od;

d1:=dimMat[2];

for rows in J do

d1:=Minimum(WeightVecFFE(rows[1])+rows[2],d1);

od;

return(d1);

end);

Leon’s Minimum Distance Algorithm, Algorithm 3

8

InstallMethod(MinimumDistanceLeon, "attribute method for linear codes", true,

[IsLinearCode], 0,

function(C)

local majority,G0, Gp, Gpt, Gt, L, k, i, j, dimMat, Grstr, J, d1,

arrayd1, Combo, rows, row, rowSum, G, F, zero, AClosestVec, s, p, num;

G0 := GeneratorMat(C);

if (IsInStandardForm(G0)=false) then

G := List(G0,ShallowCopy);

PutStandardForm(G);

fi;

F:=LeftActingDomain(C);

if F<>GF(2) then Print("Code must be binary. Quitting. \n"); return(0); fi;

p:=5; #these seem to be optimal values

num:=8; #these seem to be optimal values

dimMat := DimensionsMat(G);

s := dimMat[2]-dimMat[1];

arrayd1:=[];

for k in [1..num] do

##Permute the columns randomly

Gt := TransposedMat(G);

Gp := NullMat(dimMat[2],dimMat[1]);

L := SymmetricGroup(dimMat[2]);

L := Random(L);

L:=List([1..dimMat[2]],i->OnPoints(i,L));

for i in [1..dimMat[2]] do

Gp[i] := Gt[L[i]];

od;

Gp := TransposedMat(Gp);

Gp := ShallowCopy(Gp);

##Use gaussian elimination on the new matrix

TriangulizeMat(Gp);

##generate the restricted code (I|Z) from Gp=(I|Z|B)

Gpt := TransposedMat(Gp);

Grstr := NullMat(s,dimMat[1]);

for i in [dimMat[1]+1..dimMat[1]+s] do

Grstr[i-dimMat[1]] := Gpt[i];

od;

Grstr := TransposedMat(Grstr);

zero := Zero(F)*Grstr[1];

##search for all rows of weight p

J := []; #col number of codewords to compute the length of

for i in [1..p] do

AClosestVec:=AClosestVectorCombinationsMatFFEVecFFE(Grstr, F, zero, i, 1);

if WeightVecFFE(AClosestVec) > 0 then

Add(J, [AClosestVec,i]);

fi;

od;

d1:=dimMat[2];

for rows in J do

d1:=Minimum(WeightVecFFE(rows[1])+rows[2],d1);

od;

arrayd1[k]:=d1;

od;

if AbsoluteValue(Sum(arrayd1)/Length(arrayd1)-Int(Sum(arrayd1)/Length(arrayd1)))<1/2 then

majority:=Int(Sum(arrayd1)/Length(arrayd1));

else

majority:=Int(Sum(arrayd1)/Length(arrayd1))+1;

fi;

return(majority);

end);

9

References

[BARG] A. Barg. “Complexity Issues in Coding Theory” in Handbook of
Coding Theory, Vol 1 (edited by V. Pless, W. Huffman, R. Brualdi).
North-Holland. (1998).

[BMT] E. R. Berlekamp, R. J. McEliece, and H. C. A. Van Tilborg. On
the inherent intractability of certain coding problems. IEEE Trans.
Inform. Theory. 24 (1978) 384-386.

[CHA] F. Chabaud. On the security of some cryptosystems based on error-
correcting codes. Laboratoire d’Information de l’ENS, Preprint 1994.

[GUA] GUAVA, http://www.cadigweb.ew.usna.edu/~wdj/gap/GUAVA/

[HILL] R. Hill A First Course In Coding Theory, Oxford University Press.
(1986).

[LEO] J. S. Leon. A probabilistic algorithm for computing minimum weights
of large error-correcting codes. IEEE Trans. Inform. Theory. 34
(1988) 1354-1359.

[MS] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-
Correcting Codes. North-Holland. (1983).

[VAR] A. Vardy, Algorithmic complexity in coding theory and the mini-
mum distance problem, Annual ACM Symposium on Theory of Com-
puting, Proceedings of the twenty-ninth annual ACM symposium
on Theory, El Paso, Texas, pages: 92 - 109, 1997. Avaliable at
http://portal.acm.org/portal.cfm

10

